Fixed Displacement Radial Piston
Staffa Motor
HMB Series
## Specifications and Features

### 1. Ordering Code
   1-1. Model Coding

### 2. Technical Information
   2-1. Performance Data
   2-2. Volumetric Efficiency Data
   2-3. Shaft Power Calculations
   2-4. Functional Symbols
   2-5. Shaft Stress Limits
   2-6. Bearing Life Notes
   2-7. Circuit and Application Notes
   2-8. Motor Operation at Low Temperatures
   2-9. Freewheeling Notes
   2-10. Crankcase Drain Connections
   2-11. Installation Data
   2-12. Special Features

### 3. Dimensions
   3-1. HMB010 Installation
   3-2. HMB030 Installation
   3-3. HMB045 Installation
   3-4. HMB060/080 Installation
   3-5. HMB100 Installation
   3-6. HM(HD)B125 Installation
   3-7. HM(HD)B150/200 Installation
   3-8. HM(HD)B270 Installation
   3-9. HM(HD)B325 Installation
   3-10. HMHDB400 Installation
   3-11. HMB500 Installation
HMB Series

Fixed Displacement Radial Piston Hydraulic Motor

General Descriptions

The Kawasaki Staffa range of high torque low speed fixed displacement radial piston hydraulic motors consists of 13 frame sizes ranging from the HMB010 to HMB500. Capacity ranges from 188 to 8,000 cc/rev.

The rugged, well proven design incorporates high efficiency combined with good breakout torque and smooth running capability. Various features and options are available including, on request, mountings to match competitors’ interfaces.

The Kawasaki Staffa range also includes dual and triple displacement motors. To obtain details of these product ranges please refer to datasheet M-2002/03.17 and M-2005/12.17

Features

- Rugged, reliable, proven design
- Unique hydrostatic balancing provides minimum wear and extended life
- High volumetric and mechanical efficiency
- Capacities range from 188 to 8,000cc/rev
- Large variety of shaft and porting options
- Output torque up to 25,250Nm
- Wide range of mounting interfaces available
- Alternative displacements also available

<table>
<thead>
<tr>
<th>Motor Type</th>
<th>Displacement (cc/rev)</th>
<th>Ideal Specific Torque (Nm/Bar)</th>
<th>Mechanical Efficiency (%)</th>
<th>Operating Pressure (bar)</th>
<th>Peak Pressure (bar)</th>
<th>Power Rating (kW)</th>
<th>Speed Rating (rpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMB010</td>
<td>188</td>
<td>3.0</td>
<td>93.2</td>
<td>250</td>
<td>350</td>
<td>25</td>
<td>500</td>
</tr>
<tr>
<td>HMB030</td>
<td>492</td>
<td>7.8</td>
<td>93.4</td>
<td>250</td>
<td>350</td>
<td>52</td>
<td>450</td>
</tr>
<tr>
<td>HMB045</td>
<td>740</td>
<td>11.8</td>
<td>93.0</td>
<td>300</td>
<td>405</td>
<td>60</td>
<td>400</td>
</tr>
<tr>
<td>HMB060</td>
<td>983</td>
<td>15.6</td>
<td>92.7</td>
<td>300</td>
<td>405</td>
<td>80</td>
<td>300</td>
</tr>
<tr>
<td>HMB080</td>
<td>1,344</td>
<td>21.4</td>
<td>93.0</td>
<td>300</td>
<td>405</td>
<td>100</td>
<td>300</td>
</tr>
<tr>
<td>HMB100</td>
<td>1,639</td>
<td>25.5</td>
<td>95.4</td>
<td>300</td>
<td>405</td>
<td>110</td>
<td>250</td>
</tr>
<tr>
<td>HMB125</td>
<td>2,048</td>
<td>32.6</td>
<td>94.1</td>
<td>300</td>
<td>405</td>
<td>100</td>
<td>220</td>
</tr>
<tr>
<td>HMB150</td>
<td>2,470</td>
<td>39.3</td>
<td>94.0</td>
<td>300</td>
<td>405</td>
<td>115</td>
<td>220</td>
</tr>
<tr>
<td>HMB200</td>
<td>3,087</td>
<td>49.1</td>
<td>93.8</td>
<td>300</td>
<td>405</td>
<td>130</td>
<td>175</td>
</tr>
<tr>
<td>HMB270</td>
<td>4,310</td>
<td>68.6</td>
<td>93.0</td>
<td>300</td>
<td>405</td>
<td>140</td>
<td>125</td>
</tr>
<tr>
<td>HMB325</td>
<td>5,310</td>
<td>84.5</td>
<td>94.0</td>
<td>300</td>
<td>405</td>
<td>140</td>
<td>100</td>
</tr>
<tr>
<td>HMB500</td>
<td>8,000</td>
<td>127.3</td>
<td>89.5</td>
<td>230</td>
<td>350</td>
<td>170</td>
<td>100</td>
</tr>
</tbody>
</table>

*For detailed performance figures see Section 2-1
1-1 Model Coding

Ordering Code

**F11/HM*B 060 / S3 V/ FM3/Tj/ * / P*******

**Fluid Type**
- Blank: Mineral oil
- F3: Phosphate ester (HFD fluid)
- F11: Water based fluids (HFA, HFB & HFC)
- Alternative fluids contact Kawasaki

**Model Type**
- HMB: Standard
- HMHDB: Heavy duty

- For B400 frame size, only Heavy Duty (HMHDB) is available.

**Motor Frame Size**
See options Section 2-1

**Shaft Type**
See shaft type options in installation drawings

**Shaft Orientation**
- Blank: Horizontal and vertically down
- V: Vertically Up

**Main Port Connections**
See Port Connection options in installation drawings.

**Special Features**
- P*****: Special features (see Section 2-1)
- PL***: Non-catalogued features, (***) = number assigned by Kawasaki as required

**Design Series Number**
Current series for HMB motors

**Tacho Encoder Drive**
- Blank: None
- Tj*: Square wave output with directional signal
- Tk: Combines Tj with the T401 instrument to give a 4 to 20 mA output proportional to speed. Directional signal and speed relay output.

* Not available for B010 frame size.
### 1-1 Model Coding

#### Special Features Suffix

```
/ P * * * * *
```

### Shaft Seal Enhancements

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>High pressure shaft seal</td>
</tr>
<tr>
<td>B</td>
<td>Improved shaft seal life</td>
</tr>
<tr>
<td>C</td>
<td>High pressure shaft seal &amp; improved shaft seal life</td>
</tr>
<tr>
<td>O</td>
<td>None</td>
</tr>
</tbody>
</table>

See Section 2-12 for details

### External Protection

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Marine-specification primer paint</td>
</tr>
<tr>
<td>O</td>
<td>None</td>
</tr>
</tbody>
</table>

See Section 2-12 for details

### Installation Features

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Drain port adaptor x 1</td>
</tr>
<tr>
<td>B</td>
<td>Drain port adaptor x 2</td>
</tr>
<tr>
<td>C</td>
<td>Φ21 mm mounting holes</td>
</tr>
<tr>
<td>D</td>
<td>Φ22 mm mounting holes</td>
</tr>
<tr>
<td>E</td>
<td>Φ21 mm mounting holes &amp; Drain port adaptor x 1</td>
</tr>
<tr>
<td>F</td>
<td>Φ21 mm mounting holes &amp; Drain port adaptor x 2</td>
</tr>
<tr>
<td>G</td>
<td>Φ22 mm mounting holes &amp; Drain port adaptor x 1</td>
</tr>
<tr>
<td>H</td>
<td>Φ22 mm mounting holes &amp; Drain port adaptor x 2</td>
</tr>
<tr>
<td>O</td>
<td>None</td>
</tr>
</tbody>
</table>

See Section 2-11 for details

### Valve Enhancements

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Improved cavitation resistance</td>
</tr>
<tr>
<td>B</td>
<td>Anti-clockwise</td>
</tr>
<tr>
<td>C</td>
<td>Thermal shock resistance</td>
</tr>
<tr>
<td>D</td>
<td>Improved cavitation resistance &amp; anti-clockwise</td>
</tr>
<tr>
<td>E</td>
<td>Improved cavitation resistance &amp; thermal shock resistance</td>
</tr>
<tr>
<td>F</td>
<td>Anti-clockwise &amp; thermal shock resistance</td>
</tr>
<tr>
<td>G</td>
<td>Improved cavitation resistance &amp; anti-clockwise &amp; thermal shock resistance</td>
</tr>
<tr>
<td>O</td>
<td>None</td>
</tr>
</tbody>
</table>

See Section 2-12 for details

### Performance Enhancements

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Increased starting torque</td>
</tr>
<tr>
<td>O</td>
<td>None</td>
</tr>
</tbody>
</table>

See Section 2-12 for details
2-1 Performance Data

Rating definitions

Continuous rating
For continuous duty the motor must be operating within each of the maximum values for speed, pressure and power.

Intermittent rating
Operation within the intermittent power rating (up to the maximum continuous speed) is permitted on a 15% duty basis, for periods up to 5 minutes maximum.

Intermittent max pressure
Intermittent max pressure: 300bar.
This pressure is allowable on the following basis:

a) Up to 50rpm 15% duty for periods up to 5 minutes maximum.
b) Over 50rpm 2% duty for periods up to 30 seconds maximum.

Static pressure to DNV rules 405bar (DNV-GL-RU-Ship Part 4) - except HMB010 and HMB030 motors.

Limits for fire resistant fluids

<table>
<thead>
<tr>
<th>Fluid Type</th>
<th>Continuous Pressure (bar)</th>
<th>Intermittent Pressure (bar)</th>
<th>Max Speed (rpm)</th>
<th>Model Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>HFA 5/95 oil-in-water emulsion</td>
<td>130</td>
<td>138</td>
<td>50% of limits of mineral oil</td>
<td>All models</td>
</tr>
<tr>
<td>HFB 60/40 water-in-oil emulsion</td>
<td>138</td>
<td>172</td>
<td>As for mineral oil</td>
<td>All models</td>
</tr>
<tr>
<td>HFC water glycol</td>
<td>103</td>
<td>138</td>
<td>50% of limits of mineral oil</td>
<td>All models</td>
</tr>
<tr>
<td>HFD phosphate ester</td>
<td>207</td>
<td>241</td>
<td>As for mineral oil</td>
<td>HMB010</td>
</tr>
<tr>
<td></td>
<td>207</td>
<td>293</td>
<td>As for mineral oil</td>
<td>HMB030</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>293</td>
<td>As for mineral oil</td>
<td>HMB045 to HMHDBB400 inc.</td>
</tr>
<tr>
<td></td>
<td>190</td>
<td>227</td>
<td>As for mineral oil</td>
<td>HMB500</td>
</tr>
</tbody>
</table>
### 2-1 Performance Data

**Specifications**

<table>
<thead>
<tr>
<th>Motor Type</th>
<th>Geometric displacement (cc/rev)</th>
<th>Average actual running torque (Nm/bar)</th>
<th>Max. continuous speed (rpm)</th>
<th>Max. continuous output (kW)</th>
<th>Max. continuous pressure (bar)</th>
<th>Max. intermittent pressure (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMB010</td>
<td>188</td>
<td>2.79</td>
<td>500</td>
<td>25</td>
<td>207</td>
<td>241</td>
</tr>
<tr>
<td>HMB030</td>
<td>442</td>
<td>6.56</td>
<td>450</td>
<td>42</td>
<td>207</td>
<td>241</td>
</tr>
<tr>
<td>HMB030 (FM3)</td>
<td>492</td>
<td>7.31</td>
<td>450</td>
<td>52</td>
<td>207</td>
<td>241</td>
</tr>
<tr>
<td>HMB045</td>
<td>740</td>
<td>10.95</td>
<td>400</td>
<td>60</td>
<td>250</td>
<td>293</td>
</tr>
<tr>
<td>HMB060</td>
<td>983</td>
<td>14.5</td>
<td>300</td>
<td>80</td>
<td>250</td>
<td>293</td>
</tr>
<tr>
<td>HMB080</td>
<td>1,344</td>
<td>19.9</td>
<td>300</td>
<td>100</td>
<td>250</td>
<td>293</td>
</tr>
<tr>
<td>HMB100</td>
<td>1,639</td>
<td>24.3</td>
<td>250</td>
<td>110</td>
<td>250</td>
<td>293</td>
</tr>
<tr>
<td>HMB125</td>
<td>2,050</td>
<td>30.66</td>
<td>220</td>
<td>100</td>
<td>250</td>
<td>293</td>
</tr>
<tr>
<td>HMHDB125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMB150</td>
<td>2,470</td>
<td>36.95</td>
<td>220</td>
<td>115</td>
<td>250</td>
<td>293</td>
</tr>
<tr>
<td>HMHDB150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMB150 (FM3)</td>
<td>2,470</td>
<td>36.95</td>
<td>168</td>
<td>115</td>
<td>250</td>
<td>293</td>
</tr>
<tr>
<td>HMB200</td>
<td>3,087</td>
<td>46.07</td>
<td>175</td>
<td>130</td>
<td>250</td>
<td>293</td>
</tr>
<tr>
<td>HMHDB200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMB200 (FM3)</td>
<td>3,087</td>
<td>46.07</td>
<td>135</td>
<td>130</td>
<td>250</td>
<td>293</td>
</tr>
<tr>
<td>HMB270</td>
<td>4,310</td>
<td>63.79</td>
<td>125</td>
<td>140</td>
<td>250</td>
<td>293</td>
</tr>
<tr>
<td>HMHDB270</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMB325</td>
<td>5,310</td>
<td>79.4</td>
<td>100</td>
<td>140</td>
<td>250</td>
<td>293</td>
</tr>
<tr>
<td>HMHDB325</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMHDB400</td>
<td>6,800</td>
<td>101</td>
<td>120</td>
<td>190</td>
<td>250</td>
<td>293</td>
</tr>
<tr>
<td>HMB500</td>
<td>8,000</td>
<td>114</td>
<td>100</td>
<td>170</td>
<td>190</td>
<td>227</td>
</tr>
</tbody>
</table>

Other non standard displacements are possible - check with Kawasaki for details.
These torque curves indicate the maximum output torque and power of a fully run-in motor for a range of pressures and speeds when operating with zero outlet pressure on Mineral Oil of 50cSt (232 SUS) viscosity. High return line pressures will reduce torque for a given pressure differential. - x - x - x - Upper limit of continuous rating envelope.
2-1 Performance Data (cont)

Output Torque Curves (cont)

---

**HMB080**

Output Torque Curves:

- **Output power kW**
  - 22.4
  - 44.7
  - 70.8

---

**HMB100**

Output Torque Curves:

- **Output power kW**
  - 18.6
  - 37.3
  - 60.0
  - 74.6
  - 93.2

---

**HM(HD)B125**

Output Torque Curves:

- **Output power kW**
  - 18.6
  - 37.3
  - 56
  - 74.6
  - 93.2
2-1 Performance Data (cont)

Output Torque Curves (cont)

HM(HD)B150

Output power kW
Nm 373 746 112

Torque
Nm 373 746 112

Shaft speed (r/min)

HM(HD)B200

Output power kW
Nm 373 746 112

Torque
Nm 373 746 112

Shaft speed (r/min)

HM(HD)B270

Output power kW
Nm 373 746 112

Torque
Nm 373 746 112

Shaft speed (r/min)

HM(HD)B325

Output power kW
Nm 373 746 112

Torque
Nm 373 746 112

Shaft speed (r/min)
2-1 Performance Data (cont)

Output Torque Curves (cont)

HMHDB400

Output Torque Curves

HMB500

Output Torque Curves
Example:
HMB200 motor with displacement of 3.087 l/rev.

Speed: 60rpm
Differential pressure: 200bar
Fluid viscosity: 50 cSt

Total leakage:
\[ Qt = \left( K_1 + \frac{n}{K_2} \right) \times \Delta P \times K_v \times 0.005 \]
\[ = \left( 1.34 + \frac{60}{534.05} \right) \times 200 \times 1 \times 0.005 \]
\[ = 6.53 \text{ l/min} \]

Volumetric efficiency:
\[ \text{Volumetric efficiency} = \left( \frac{60 \times 3.087}{60 \times 3.087 + 6.53} \right) \times 100 \]
\[ = 96.6\% \]
2-3 Shaft Power Calculation

Example

Firstly, to find the maximum differential pressure $\Delta P$ at rated speed:

Select the rated shaft power ($W$) for the motor from the performance data table (in Section 2-1). This is presented in kilowatts so must be converted to watts ($\times 1000$).

Then also take the actual average running torque in N m/bar ($T_o$) and the rated shaft speed in rpm ($n$).

$$W = \frac{T_o \cdot \Delta P \cdot 2\pi \cdot n}{60}$$

Or to find maximum $\Delta P$ then use:

$$\Delta P = \frac{60 \cdot W}{2\pi \cdot T_o \cdot n}$$

HMB270 Example:

- Rated shaft power, $W$ (W): 140,000
- Average actual running torque, $T_o$ (Nm/bar): 63.79
- Rated shaft speed, $n$ (rpm): 125

$$\Delta P = \frac{60 \times 140,000}{2\pi \times 63.79 \times 125}$$

$$\Delta P = \text{167 bar (max.)}$$

Secondly, to find the maximum speed at rated pressure (using the same information as before):

$$n = \frac{60 \cdot W}{2\pi \cdot T_o \cdot \Delta P}$$

Rated pressure (bar): 250

$$n = \frac{60 \times 140,000}{2\pi \times 63.79 \times 250}$$

$$n = \text{83 rpm (max.)}$$

In summary, operating the motor within its shaft power limit, at rated speed, would give a maximum pressure of 167 bar, and operating the motor at rated pressure, would give a maximum speed of 83rpm.

Notes

1) The maximum calculated speed is based on a rated inlet pressure of 250bar.
2) The maximum shaft power is only allowable if the motor drain temperature remains below 80°C.
3) The maximum calculated differential pressure assumes that the low pressure motor port is less than 30bar.
2-4 Functional Symbols

HMB010-HMB030 (Monobloc)

- F(M)3-; F(M)4-; SM3
HMB030*/045*(TPB)
HMB500

HMB045-**
(Monobloc)

HMHDB400-**-
HMB500
Removable plug

HMB045-**D-
(Monobloc)

HMHDB400-**-
HMB500
S045
Dual ports

*F(M)3 ONLY

HMB060/080
HMB100/125
HMB150/200

S045
2-5 Stress Limits

When applying large external radial loads, consideration should also be given to motor bearing lives (see Section 2-6).

<table>
<thead>
<tr>
<th>Motor Frame Size</th>
<th>Shaft Types</th>
<th>Maximum External Radial Bending Moment [Nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMB010</td>
<td>P, S</td>
<td>1,550</td>
</tr>
<tr>
<td>HMB030</td>
<td>P, S &amp; Z</td>
<td>2,400</td>
</tr>
<tr>
<td>HMB045</td>
<td>P, S &amp; Z</td>
<td>3,240</td>
</tr>
<tr>
<td>HM060, 080 &amp; 100</td>
<td>P, S, Z &amp; T</td>
<td>5,500</td>
</tr>
<tr>
<td>HMB125, 150 &amp; 200</td>
<td>P1, S3, S4, Z3, &amp; T</td>
<td>6,600</td>
</tr>
<tr>
<td>HMHDB125, 150, 200</td>
<td>S5, Z5 &amp; P2</td>
<td>12,750</td>
</tr>
<tr>
<td>HMB270 &amp; 325</td>
<td>P1, S3, Z3 &amp; T</td>
<td>7,500</td>
</tr>
<tr>
<td>HMHDB270 &amp; 325</td>
<td>P2, S5 &amp; Z5</td>
<td>15,900</td>
</tr>
<tr>
<td>HMHDB400</td>
<td>P, S &amp; Z</td>
<td>16,200</td>
</tr>
<tr>
<td>HMB500</td>
<td>P, S &amp; Z</td>
<td>16,200</td>
</tr>
</tbody>
</table>

Example:

Determine the maximum radial shaft load of a HMB080 motor:

Radial load offset, A = 100mm  
Maximum radial load, W = 5,500 (see table)/100  
= **55kN (5,607 kg)**

![Diagram]

A = Distance from mounting face to load centre (mm)

W = Side load (N)

**NOTE:**  
The offset distance A is assumed to be greater than 50mm. Contact Kawasaki if this is not the case.
Consideration should be given to the required motor bearing life in terms of baring service life. The factors that will determine bearing life include:

1) Duty cycle - time spent on and off load
2) Speed
3) Differential pressure
4) Fluid viscosity
5) External radial shaft load
6) External axial shaft load

**NOTE:**
A heavy duty HM(HD)B motor can be ordered to further improve bearing life. Consult Kawasaki for a detailed bearing life calculation.
2-7 Circuit and Application Notes

Starting torque

The starting torques shown on the graphs in Section 2-1 are average and will vary with system parameters.

Low Speed Operations

Minimum operating speeds are determined by the hydraulic system and load conditions (load inertia, drive elasticity, etc.) Recommended minimum speeds are shown below:

<table>
<thead>
<tr>
<th>Model Type</th>
<th>rpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMB010</td>
<td>20</td>
</tr>
<tr>
<td>HMB030</td>
<td>5</td>
</tr>
<tr>
<td>HMB045</td>
<td>6</td>
</tr>
<tr>
<td>HMB060/080/100</td>
<td>3</td>
</tr>
<tr>
<td>HM(HD)B125/150/200</td>
<td>3</td>
</tr>
<tr>
<td>HM(HD)B270/325</td>
<td>2</td>
</tr>
<tr>
<td>HMHDB400/HMB500</td>
<td>2</td>
</tr>
</tbody>
</table>

High Back Pressure

When both inlet and outlet ports are pressurised continuously, the lower port pressure must not exceed 70 bar at any time.

**NOTE:** High back pressure reduces the effective torque output of the motor.

Boost Pressure

When operating as a motor the outlet pressure should equal or exceed the crankcase pressure. If pumping occurs (i.e. overrunning loads) then a positive pressure, “P”, is required at the motor ports. Calculate “P” (bar) from the operating formula Boost Formula $P = \frac{1+N^2 \times V^2 + C}{K}$

Where $P$ is in bar, $N$ = motor speed (rpm), $V$ = motor displacement (cc/rev), $C$ = crankcase pressure (bar) and $K$ = a constant from the table below:

<table>
<thead>
<tr>
<th>Motor</th>
<th>Porting</th>
<th>Constant (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMB010</td>
<td>Standard</td>
<td>8.0 x 10^8</td>
</tr>
<tr>
<td>HMB030</td>
<td>Standard - Monobloc, F(M)3 SM3</td>
<td>3.7 x 10^9, 7.5 x 10^9</td>
</tr>
<tr>
<td>HMB045</td>
<td>Standard - Monobloc, F(M)3 SM3</td>
<td>1.3 x 10^10, 1.6 x 10^10</td>
</tr>
<tr>
<td>HMB060, HMB080 &amp; HMB100</td>
<td>F(M)3 SM3</td>
<td>1.8 x 10^9</td>
</tr>
<tr>
<td>HM(HD)B125, HM(HD)B150 &amp; HM(HD)B200</td>
<td>FM(3) SM3, FM(4)</td>
<td>4.0 x 10^9, 8.0 x 10^9</td>
</tr>
<tr>
<td>HM(HD)B270 &amp; HM(HD)B325</td>
<td>FM(4)</td>
<td>7.2 x 10^9</td>
</tr>
<tr>
<td>HMHDB400 &amp; HMB500</td>
<td>SO4 SO45</td>
<td>7.2 x 10^9</td>
</tr>
</tbody>
</table>
### Cooling Flow

Operating within the continuous rating does not require any additional cooling.

For operating conditions above "continuous", up to the "intermittent" rating, additional cooling oil may be required. This can be introduced through the spare crankcase drain ports.

Consult Kawasaki about such applications.

### Motorcase pressure

With the standard shaft seal fitted, the motor casing pressure should not exceed 3.5bar.

#### NOTES

1) The casing pressure at all times must not exceed either the motor inlet or outlet pressure.

2) High pressure shaft seals are available for casing pressures of:
   - 9bar for HMB010
   - 10bar for all remaining frame sizes.

3) Check installation dimensions for maximum crankcase drain fitting depth.

---

### Hydraulic Fluids

Dependent on motor (see model code fluid type - Section 1-1) suitable fluids include:

- **a)** Antiwear hydraulic oils
- **b)** Phosphate ester (HFD fluids)
- **c)** Water glycols (HFC fluids)
- **d)** 60/40% water-in-oil emulsions (HFB fluids)
- **e)** 5/95% oil-in-water emulsions (HFA fluids)
- **f)** Antiwear environmentally acceptable lubricants (EALs)

Some fluids require a reduction in pressure and speed limits. Please see table in Section 1-1.

Viscosity limits when using any fluid except oil-in-water (5/95) emulsions are:

- **Max. off load:** 2,000cSt (9270 SUS)
- **Max. on load:** 150cSt (695 SUS)
- **Optimum:** 50cSt (232 SUS)
- **Minimum:** 25cSt (119 SUS)

### Temperature limits

| Ambient min. | -30°C (-22°F) |
| Ambient max. | +70°C (158°F) |

Max. operating temperature range.

<table>
<thead>
<tr>
<th>Mineral oil</th>
<th>Water containing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>-20°C (-4°F)</td>
</tr>
<tr>
<td>Max.</td>
<td>+80°C (175°F)</td>
</tr>
</tbody>
</table>

| Min. | +10°C (50°F) |
| Max. | +54°C (130°F) |

**NOTE:** To obtain optimum services life from both fluid and hydraulic systems components, a fluid operating temperature of 40°C is recommended.

---

For trouble free operation the motor's crankcase pressure must always be lower than both of the motor port pressures:

$$ P_{\text{case}} < P_{\text{in}} \quad \text{and} \quad P_{\text{case}} < P_{\text{out}} $$
Mineral oil recommendations

The fluid should be a good hydraulic grade, non-detergent mineral oil. It should contain anti-oxidant, antifoam and demulsifying additives. It must contain antiwear or extreme pressure (EP) additives. Automatic transmission fluids and motor oils are not recommended.

Biodegradable Fluid Recommendations

Well-designed environmentally acceptable lubricants (EALs) may be used with Staffa motors. The EAL must be designed for use in hydraulic systems and have a synthetic ester base. Additives should be as listed for mineral oils, above. The performance of EALs with hydraulic systems vary widely and so checks for seal compatibility, copper alloy compatibility, oxidation resistance and lubrication properties should be carried out before selecting an EAL. For help with EALs please contact Kawasaki.

Filtration

Full flow filtration (open circuit), or full boost flow filtration (closed circuit) to ensure system cleanliness to ISO4406 code 22/18/13 or cleaner.

Noise levels

The airborne noise level is less than 66.7dB(A) DIN & dB(A) NFPA through the continuous operating envelope. Where noise is a critical factor, installation resonances can be reduced by isolating the motor by elastomeric means from the structure and the return line installation. Potential return line resonances originating from liquid borne noise can be further attenuated by providing a return line back pressure of 2 to 5bar.

Polar moment of intertia and mass table

<table>
<thead>
<tr>
<th>Motor Frame Size</th>
<th>Polar Moment of Intertia (kg m²) (Typical data)</th>
<th>Mass (kg) (Approx. all models)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMB010</td>
<td>0.0076</td>
<td>40</td>
</tr>
<tr>
<td>HMB030</td>
<td>0.0150</td>
<td>73</td>
</tr>
<tr>
<td>HMB045</td>
<td>0.0470</td>
<td>120</td>
</tr>
<tr>
<td>HMB060</td>
<td>0.0500</td>
<td>144</td>
</tr>
<tr>
<td>HMB080</td>
<td>0.0600</td>
<td>144</td>
</tr>
<tr>
<td>HMB100</td>
<td>0.0760</td>
<td>144</td>
</tr>
<tr>
<td>HMB125</td>
<td>0.2200</td>
<td>217</td>
</tr>
<tr>
<td>HMB150</td>
<td>0.2500</td>
<td>265</td>
</tr>
<tr>
<td>HMB200</td>
<td>0.2700</td>
<td>265</td>
</tr>
<tr>
<td>HMB270</td>
<td>0.4900</td>
<td>420</td>
</tr>
<tr>
<td>HMB325</td>
<td>0.5000</td>
<td>429</td>
</tr>
<tr>
<td>HMHD400 - S04</td>
<td>0.5400</td>
<td>481</td>
</tr>
<tr>
<td>HMHD400 - S045</td>
<td>0.5400</td>
<td>510</td>
</tr>
<tr>
<td>HMB500</td>
<td>0.5400</td>
<td>510</td>
</tr>
</tbody>
</table>
2-8 Motor Operation at Low Temperature

When operating the motor at low temperature consideration should be given to the fluid viscosity. The maximum fluid viscosity before the shaft should be turned is 2,000cSt. The maximum fluid viscosity before load is applied to the motor shaft is 150cSt.

If low ambient temperature conditions exist, then a crankcase flushing flow of at least 5 l/min should be applied to the motor during periods when the motor is not in use.

The shaft seal temperature limits for both medium and high pressure applications are shown in the table below.

<table>
<thead>
<tr>
<th></th>
<th>Non-operating temperature limits</th>
<th>Minimum operating temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard pressure</td>
<td>below minus 40°C and above 100°C</td>
<td>minus 30°C</td>
</tr>
<tr>
<td>High pressure</td>
<td>below minus 30°C and above 120°C</td>
<td>minus 15°C</td>
</tr>
</tbody>
</table>

All seals are very brittle below minus 40°C and are likely to break very easily and due to their sluggish response may not provide a 100% leak free condition.

It should be noted that the maximum continuous operating temperature within the motor crankcase is plus 80°C.
All Staffa motors can be used in freewheeling applications.

In all circumstances it is essential that the motor is unloaded (A and B ports connected together) and that the circuit is boosted.

The required boost pressure is dependent on both the speed and displacement conditions.

It should be noted that for HMB series motors, to achieve freewheel, large flows will have to re-circulate around the motor.

This will require a large recirculating valve and consideration of circuit cooling as the motor will be generating a braking torque.

It is for these reasons that HMC, HPC or HMF series motors are the preferred option for freewheeling applications.

See catalogues M-2002/03.17, M-2003/03.17 and M-2005/12.17 for details.
2-10 Crankcase Drain Connections

Motor axis - horizontal

The recommended minimum pipe size for drain line lengths up to approx. 5m is 12.0mm (½") bore. Longer drain lines should have their bore size increased to keep the crankcase pressure within limits.

Motor axis - vertical shaft up

Specify "V" within the model code for extra drain port, G¼” (BSPF). Connect this port into the main drain line downstream of a 0.35bar check valve to ensure good bearing lubrication. The piping arrangement must not allow syphoning from the motorcase. (refer to installation drawing for details).

Motor axis - vertical shaft down

The piping, from any drain port, must be taken above the level of the motorcase to ensure good bearing lubrication. The arrangement must not allow syphoning from the motorcase.
2-11 Installation Data

◆ Spigot

The motor should be located by the mounting spigot on a flat, robust surface using correctly sized bolts.

The diametrical clearance between the motor spigot and the mounting must not exceed 0.15mm. If the application incurs shock loading, frequent reversing or high speed running, then high tensile bolts should be used, including one fitted bolt.

◆ Bolt Torque

The recommended torque wrench setting for bolts is as follows:

<table>
<thead>
<tr>
<th>Size</th>
<th>Torque (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M12</td>
<td>97 +/- 7Nm</td>
</tr>
<tr>
<td>M14</td>
<td>160 +/- 21Nm</td>
</tr>
<tr>
<td>M18</td>
<td>312 +/- 14Nm</td>
</tr>
<tr>
<td>M20</td>
<td>407 +/- 14Nm</td>
</tr>
<tr>
<td>M24</td>
<td>690 +/- 27Nm</td>
</tr>
<tr>
<td>½&quot; UNF</td>
<td>97 +/- 7Nm</td>
</tr>
<tr>
<td>¾&quot; UNF</td>
<td>265 +/- 14Nm</td>
</tr>
<tr>
<td>1&quot;</td>
<td>393 +/- 14Nm</td>
</tr>
<tr>
<td>1&quot;</td>
<td>810 +/- 27Nm</td>
</tr>
</tbody>
</table>

◆ Shaft Coupling

Where the motor is solidly coupled to a shaft having independent bearings the shaft must be aligned to within 0.13mm TIR.

◆ End of Motor Life

The motor unit must be completely empty upon disposal. It must be disposed of according to national regulations and safety information for the disposal of hydraulic fluids.

All individual parts of the motor unit must be recycled. Separate the motor unit parts according to: cast iron, steel, aluminium, non-ferrous metal, electronic waste, plastic, and seals.
# 2-12 Special Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Section</th>
<th>HMB 010</th>
<th>HMB 030</th>
<th>HMB 030 F(M3)</th>
<th>HMB 030 - SM3</th>
<th>HMB 045</th>
<th>HMB 045 F(M3)</th>
<th>HMB 045 - SM3</th>
<th>HMB 100</th>
<th>HM(HD)B 125</th>
<th>HM(HD)B 150/200</th>
<th>HM(HD)B 270</th>
<th>HM(HD)B 325</th>
<th>HM(HDB) 400</th>
<th>HMB 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Pressure Shaft Seal</td>
<td>2-12</td>
<td>●</td>
</tr>
<tr>
<td>Improved Shaft Seal Life</td>
<td>2-12</td>
<td>●</td>
</tr>
<tr>
<td>Improved Cavitation Resistance</td>
<td>2-12</td>
<td>●</td>
</tr>
<tr>
<td>Increased Starting Torque</td>
<td>2-12</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>Anti-clockwise Rotation</td>
<td>2-12</td>
<td>●</td>
</tr>
<tr>
<td>Thermal Shock Resistance</td>
<td>2-12</td>
<td>●</td>
</tr>
<tr>
<td>Drain Port Adaptor - ½&quot; BSPP</td>
<td>2-12</td>
<td>●</td>
</tr>
<tr>
<td>Ф21mm Mounting Holes</td>
<td>2-12</td>
<td>●</td>
</tr>
<tr>
<td>Ф22mm Mounting Holes</td>
<td>2-12</td>
<td>●</td>
</tr>
<tr>
<td>Marine-specification Primer Paint</td>
<td>2-12</td>
<td>●</td>
</tr>
</tbody>
</table>

- ● Available
- ○ Not available

If a motor is to be ordered with any special features listed, please contact Kawasaki.
2-12 Special Features (cont)

**High Pressure Shaft Seal**

Description:
- > 10bar rated (9bar for HMB010)
- > Recommended for cold climates
- > Rugged aluminium construction

**Technical Information**

Where crankcase pressure will be higher than 3.5 bar, the high pressure shaft seal should be selected.

<table>
<thead>
<tr>
<th>Case pressure</th>
<th>≤ 10bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-operating temperature limits</td>
<td>Below -30°C and above 120°C</td>
</tr>
<tr>
<td>Minimum operating temperature</td>
<td>-15°C</td>
</tr>
<tr>
<td>Maximum operating temperature</td>
<td>80°C</td>
</tr>
<tr>
<td>Minimum viscosity</td>
<td>2,000cSt</td>
</tr>
<tr>
<td>Maximum viscosity</td>
<td>150cSt</td>
</tr>
</tbody>
</table>

**Applicable to:**

<table>
<thead>
<tr>
<th>HMB 030</th>
<th>HMB 030 -F(M)3/SM3</th>
<th>HMB 045</th>
<th>HMB 045 -F(M)3/SM3</th>
<th>HMB 060/080</th>
<th>HMB 100</th>
<th>HM(HD)B 125</th>
<th>HM(HD)B 150/200</th>
<th>HM(HD)B 270</th>
<th>HM(HD)B 325</th>
<th>HMHDB 400</th>
<th>HMB 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>●</td>
</tr>
</tbody>
</table>

Please contact Kawasaki to order this feature.
2-12 Special Features (cont)

Improved Shaft Seal Life

Description:

> Stainless steel sleeve prevents corrosion
> Improved wear resistance
> Recommended for corrosive environments

Technical Information

A well-established method of increasing rotary seal life in corrosive environments is to fit a thin-walled, stainless steel sleeve to the rotating shaft to provide a corrosion-resistant, wear-resistant counterface surface for the seal to run against. All HMB motors can be fitted with such sleeves upon request.

<table>
<thead>
<tr>
<th>Sleeve material</th>
<th>A304/301 Stainless Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleeve surface finish</td>
<td>Rₐ 0.25 to 0.5μm (10 to 20μin)</td>
</tr>
</tbody>
</table>

Applicable to:

<table>
<thead>
<tr>
<th>HMB 010</th>
<th>HMB 030</th>
<th>HMB 030-F(M)3/SM3</th>
<th>HMB 045</th>
<th>HMB 045-F(M)3/SM3</th>
<th>HMB 060/080</th>
<th>HMB 100</th>
<th>HM(HD)B 125</th>
<th>HM(HD)B 150/200</th>
<th>HM(HD)B 270</th>
<th>HM(HD)B 325</th>
<th>HMHDB 400</th>
<th>HMB 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>●</td>
<td>●</td>
<td>○</td>
<td>●</td>
<td>○</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

Please contact Kawasaki to order this feature.
2-12 Special Features (cont)

Improved Cavitation Resistance

Description:

- Recommended for overrunning applications
- Protects against seal damage for short periods of operation in vacuum inlet conditions.

Cavitation can occur due to many different factors. Although it is not possible to make the HMB motor resistant to cavitation, certain features can be added to improve the motor’s resistance to short periods of lost port pressure.

In applications where the HMB motor can be driven (like a pump) a risk arises that insufficient fluid will be provided to maintain a positive pressure at both main ports of the motor causing cavitation. The results of extended running at these conditions can be catastrophic to the motor’s function.

The improved cavitation resistance feature should be considered where:

- Overrunning conditions may occur (load driving the motor)
- Loss of main port pressure while motor is rotating

NOTE:
This feature comes as standard on monobloc HMB motors (HMB010, HMB030, HMB045).

Applicable to:

<table>
<thead>
<tr>
<th>HMB 010</th>
<th>HMB 030</th>
<th>HMB 030-F(M)3/SM3</th>
<th>HMB 045</th>
<th>HMB 045-F(M)3/SM3</th>
<th>HMB 060/080</th>
<th>HMB 100</th>
<th>HMB(HD)B 125</th>
<th>HMB(HD)B 150/200</th>
<th>HMB(HD)B 270</th>
<th>HMB(HD)B 325</th>
<th>HMB(HD)B 400</th>
<th>HMB 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>●</td>
</tr>
</tbody>
</table>

Please contact Kawasaki to order this feature.
2-12 Special Features (cont)

Increased Starting Torque

Description:

> Optimised for high break-out torque
> Recommended for low speed operation
> Improved service life for low speed applications

Technical Information

If an application demands the drive motor be run at speeds of less than 10 rpm for most of the duty cycle, or involves frequent start/stop or forward/reverse operation, the Staffa HMB motor range has it covered.

By optimising the HMB motor’s design for low speeds, it is possible to increase the break out torque and low speed mechanical efficiency performance.

All figures given in Section 2-1 Performance Data are still valid when selecting this feature.

Increased starting torque option

Shaft speed

Torque
Volumetric Performance

In order to achieve increased torque at low speeds the volumetric characteristics of the motor performance are changed.

When calculating leakage and volumetric efficiency use the constants shown here in place of those given for the standard motor in Section 2-1.

<table>
<thead>
<tr>
<th>Motor Type</th>
<th>Geometric Displacement</th>
<th>Zero Speed Constant</th>
<th>Speed Constant</th>
<th>Creep Speed Constant</th>
<th>Crankcase Leakage Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cc/rev</td>
<td>K1</td>
<td>K2</td>
<td>K3</td>
<td>K4</td>
</tr>
<tr>
<td>HMB010</td>
<td>188</td>
<td>8.80</td>
<td>534.05</td>
<td>47.05</td>
<td>7.98</td>
</tr>
<tr>
<td>HMB030</td>
<td>442</td>
<td>8.62</td>
<td>51.80</td>
<td>17.54</td>
<td>8.06</td>
</tr>
<tr>
<td>HMB030 2-piece</td>
<td>492</td>
<td>8.51</td>
<td>57.67</td>
<td>19.37</td>
<td>8.06</td>
</tr>
<tr>
<td>HMB045</td>
<td>740</td>
<td>3.93</td>
<td>43.36</td>
<td>12.80</td>
<td>9.23</td>
</tr>
<tr>
<td>HMB060</td>
<td>983</td>
<td>9.19</td>
<td>29.91</td>
<td>9.95</td>
<td>9.35</td>
</tr>
<tr>
<td>HMB080</td>
<td>1,344</td>
<td>9.18</td>
<td>21.62</td>
<td>7.39</td>
<td>9.31</td>
</tr>
<tr>
<td>HMB100</td>
<td>1,639</td>
<td>9.10</td>
<td>19.90</td>
<td>5.97</td>
<td>9.35</td>
</tr>
<tr>
<td>HM(HD)B125</td>
<td>2,050</td>
<td>9.53</td>
<td>11.45</td>
<td>4.88</td>
<td>8.82</td>
</tr>
<tr>
<td>HM(HD)B150</td>
<td>2,470</td>
<td>9.09</td>
<td>9.98</td>
<td>4.02</td>
<td>8.86</td>
</tr>
<tr>
<td>HM(HD)B200</td>
<td>3,087</td>
<td>10.00</td>
<td>14.99</td>
<td>3.20</td>
<td>8.86</td>
</tr>
<tr>
<td>HM(HD)B270</td>
<td>4,310</td>
<td>13.63</td>
<td>21.16</td>
<td>3.11</td>
<td>12.26</td>
</tr>
<tr>
<td>HM(HD)B325</td>
<td>5,310</td>
<td>13.60</td>
<td>18.21</td>
<td>2.52</td>
<td>12.26</td>
</tr>
<tr>
<td>HMHDB400</td>
<td>6,800</td>
<td>19.00</td>
<td>10.18</td>
<td>2.73</td>
<td>17.29</td>
</tr>
</tbody>
</table>

Applicable to:

Please contact Kawasaki to order this feature.
### 2-12 Special Features (cont)

#### Anti-Clockwise Rotation

**Description:**

- Reduce installation complexity
- Standardise equipment designs

**Technical Information**

All HMB motors can be specified with an anti-clockwise rotation valve configuration. All performance and volumetric characteristics remain unchanged.

**Applicable to:**

<table>
<thead>
<tr>
<th>HMB 010</th>
<th>HMB 030</th>
<th>HMB 030 -F(M)3/SM3</th>
<th>HMB 045</th>
<th>HMB 045 -F(M)3/SM3</th>
<th>HMB 060/080</th>
<th>HMB 100</th>
<th>HMB(HD)B 125</th>
<th>HMB(HD)B 150/200</th>
<th>HMB(HD)B 270</th>
<th>HMB(HD)B 325</th>
<th>HMHDB 400</th>
<th>HMB 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>●</td>
</tr>
</tbody>
</table>

Please contact Kawasaki to order this feature.
**2-12 Special Features (cont)**

**Thermal Shock Resistance**

**Description:**
- Recommended for cold climates
- Optimised for start-up in freezing temperatures
- Engineered for total peace of mind

**Technical Information**

Starting up a cold system with warm hydraulic fluid is a known cause of heavy wear and potential seizure of hydraulic machinery. To minimise this potential risk, the HMB motor can be configured to combat thermal shocks to give complete peace of mind when operating in very cold climates.

**Volumetric Performance**

In order to provide thermal shock resistance the volumetric characteristics of the motor performance are changed. When calculating leakage and volumetric efficiency use the constants shown in Section 2-12 in place of those given for the standard motor in Section 2-1.

All figures given in Section 2-1 Performance Data are still valid when selecting this feature.

**Note:**

When operating at low temperature, consideration must be given to the guidance notes in Section 2-8 Motor Operation at Low Temperature.
## 2-12 Special Features (cont)

### Thermal Shock Resistance (cont)

<table>
<thead>
<tr>
<th>Motor Type</th>
<th>Geometric Displacement</th>
<th>Zero Speed Constant</th>
<th>Speed Constant</th>
<th>Creep Speed Constant</th>
<th>Crankcase Leakage Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cc/rev</td>
<td>K1</td>
<td>K2</td>
<td>K3</td>
<td>K4</td>
</tr>
<tr>
<td>HMB060</td>
<td>983</td>
<td>3.72</td>
<td>29.91</td>
<td>4.39</td>
<td>1.88</td>
</tr>
<tr>
<td>HMB080</td>
<td>1,344</td>
<td>3.71</td>
<td>21.62</td>
<td>3.32</td>
<td>1.84</td>
</tr>
<tr>
<td>HMB100</td>
<td>1,600</td>
<td>3.63</td>
<td>19.90</td>
<td>2.63</td>
<td>1.88</td>
</tr>
<tr>
<td>HM(HD)B125</td>
<td>2,050</td>
<td>4.41</td>
<td>11.45</td>
<td>2.21</td>
<td>1.35</td>
</tr>
<tr>
<td>HM(HD)B150</td>
<td>2,470</td>
<td>3.97</td>
<td>9.98</td>
<td>1.81</td>
<td>1.39</td>
</tr>
<tr>
<td>HM(HD)B200</td>
<td>3,087</td>
<td>4.88</td>
<td>14.99</td>
<td>1.43</td>
<td>1.39</td>
</tr>
<tr>
<td>HM(HD)B270</td>
<td>4,310</td>
<td>5.52</td>
<td>21.16</td>
<td>1.23</td>
<td>1.80</td>
</tr>
<tr>
<td>HM(HD)B325</td>
<td>5,310</td>
<td>5.49</td>
<td>18.21</td>
<td>0.99</td>
<td>1.80</td>
</tr>
<tr>
<td>HMHDB400</td>
<td>6,800</td>
<td>6.41</td>
<td>10.18</td>
<td>0.88</td>
<td>2.35</td>
</tr>
</tbody>
</table>

### Applicable to:

<table>
<thead>
<tr>
<th>HMB 010</th>
<th>HMB 030</th>
<th>HMB 030 -F(M)/SM3</th>
<th>HMB 045</th>
<th>HMB 045 -F(M)/SM3</th>
<th>HMB 060/080</th>
<th>HMB 100</th>
<th>HMB 125</th>
<th>HMB 150/200</th>
<th>HMB 270</th>
<th>HMB 325</th>
<th>HMB 400</th>
<th>HMB 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>○</td>
</tr>
</tbody>
</table>

Please contact Kawasaki to order this feature.
Drain Port Adaptors

Description:

> Improves manufacturing logistics

> Motor supplied ready for connection to ½” BSPP male fitting

Technical Information

<table>
<thead>
<tr>
<th>Motor Type</th>
<th>Adaptor Supplied</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMB010</td>
<td>¼” BSP to ½” BSPP</td>
</tr>
<tr>
<td>HMB030</td>
<td>¼” BSP to ½” BSPP</td>
</tr>
<tr>
<td>HMB045</td>
<td>¾” BSP to ½” BSPP</td>
</tr>
<tr>
<td>HMB060</td>
<td>¾” UNF 2B to ½” BSPP</td>
</tr>
<tr>
<td>HMB080</td>
<td>¾” UNF 2B to ½” BSPP</td>
</tr>
<tr>
<td>HMB100</td>
<td>¾” UNF 2B to ½” BSPP</td>
</tr>
<tr>
<td>HMB045-F(M)3/SM3</td>
<td>¾” UNF 2B to ½” BSPP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Motor Type</th>
<th>Adaptor Supplied</th>
</tr>
</thead>
<tbody>
<tr>
<td>HM(HD)B125</td>
<td>¾” UNF 2B to ½” BSPP</td>
</tr>
<tr>
<td>HM(HD)B150</td>
<td>¾” UNF 2B to ½” BSPP</td>
</tr>
<tr>
<td>HM(HD)B200</td>
<td>¾” UNF 2B to ½” BSPP</td>
</tr>
<tr>
<td>HM(HD)B270</td>
<td>¾” UNF 2B to ½” BSPP</td>
</tr>
<tr>
<td>HM(HD)B325</td>
<td>¾” UNF 2B to ½” BSPP</td>
</tr>
<tr>
<td>HMHDB400</td>
<td>¾” UNF 2B to ½” BSPP</td>
</tr>
<tr>
<td>HMB500</td>
<td>¾” UNF 2B to ½” BSPP</td>
</tr>
</tbody>
</table>

One or two drain adaptors can be supplied.

Applicable to:

<table>
<thead>
<tr>
<th>HMB010</th>
<th>HMB030</th>
<th>HMB030-F(M)3/SM3</th>
<th>HMB045</th>
<th>HMB045-F(M)3/SM3</th>
<th>HMB060/080</th>
<th>HMB100</th>
<th>HM(HD)B125</th>
<th>HM(HD)B150/200</th>
<th>HM(HD)B270</th>
<th>HM(HD)B325</th>
<th>HMHDB400</th>
<th>HMB500</th>
</tr>
</thead>
<tbody>
<tr>
<td>⬤</td>
</tr>
</tbody>
</table>

Please contact Kawasaki to order this feature.
Description:
> Matching mounting holes to bolts
> Φ21mm and Φ22mm options available

Technical Information
In different markets, different bolt standards are adopted which may not be best suited to the standard Φ20mm mounting hole diameter on the HMB motors. To give a correct fit and optimum installation, Φ21mm or Φ22mm holes can be selected on larger frame sizes.

Applicable to:

<table>
<thead>
<tr>
<th>HMB 010</th>
<th>HMB 030</th>
<th>HMB 030 -F(M)3/SM3</th>
<th>HMB 045</th>
<th>HMB 045 -F(M)3/SM3</th>
<th>HMB 060/080</th>
<th>HMB 100</th>
<th>HMB(HD)B 125</th>
<th>HMB(HD)B 150/200</th>
<th>HMB(HD)B 270</th>
<th>HMB(HD)B 325</th>
<th>HMHDB 400</th>
<th>HMB 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

Please contact Kawasaki to order this feature.
**2-12 Special Features (cont)**

**Marine Specification Primer Paint**

### Description:

- Improves corrosion and water resistance of the finishing system
- Excellent adhesion strength
- Recommended for marine applications

### Technical Information

<table>
<thead>
<tr>
<th>Colour</th>
<th>Red oxide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Single pack epoxy etching primer</td>
</tr>
<tr>
<td>Standard</td>
<td>BS 3900 part A 8</td>
</tr>
<tr>
<td>Dry film thickness</td>
<td>&gt; 12μm</td>
</tr>
</tbody>
</table>

### Applicable to:

<table>
<thead>
<tr>
<th>HMB 010</th>
<th>HMB 030</th>
<th>HMB 030 -F(M)3/SM3</th>
<th>HMB 045</th>
<th>HMB 045 -F(M)3/SM3</th>
<th>HMB 060/080</th>
<th>HMB 100</th>
<th>HM(HD)B 125</th>
<th>HM(HD)B 150/200</th>
<th>HM(HD)B 270</th>
<th>HM(HD)B 325</th>
<th>HM(HD)B 400</th>
<th>HMB 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>●</td>
</tr>
</tbody>
</table>

Please contact Kawasaki to order this feature.
2-12 Special Features (cont)

Tj speed sensor with Tk readout option

**Tj Speed Sensor Technical Specification**

The Tj speed sensor is a hall effect dual channel speed probe that can provide feedback of both speed and direction.

- **Signal Outputs:** Square wave plus directional signal
- **Power Supply:** 8 to 32V @ 40mA
- **Protection class:** IP68
- **Output frequency:** 16 pulses/revolution

**Installation Details**

**TO SUIT: F3/FM3/SM3**

The Tk output module consists of the Tj speed sensor together with the optional T401 output module.

The addition of the T401 module provides a software configured single channel tachometer and relay with a 0/4-20mA analogue current output.

The software and calibration cable is also provided.

* Cannot be fitted to HMB010
3 Dimensions

3-1 HMB010

&P & S' Shafts

SPLINE DATA

'S'
TO BS 3550 (ANSI B92.1 CLASS 5)
FLAT ROOT SIDE FIT, CLASS 1
PRESSURE ANGLE 30°
NUMBER OF TEETH 13
PITCH 8/16
MAJOR DIAMETER 43.71/43.59
FORM DIAMETER 38.136
MINOR DIAMETER 37.36/36.91
PIN DIAMETER 6.096
DIAMETER OVER PINS 50.104/50.152

KEY SUPPLIED-
10.030/10.015 WIDE
8.000/7.964 THICK

M8-1.25 PITCH X 18 FULL THREAD DEPTH
3/8" BSP DRAIN (CHOICE OF 3 POSITIONS)
(2 NORMALLY PLUGGED)

NOTE: ENSURE ON INSTALLATION THAT DRAIN IS TAKEN FROM ABOVE MOTOR CENTRELINE.

DO NOT EXCEED 12 DEPTH OF COUPLING IN TO DRAIN PORT

PORT FLANGE BOLT TAPPPING SIZE:
M10 X P1.5 X 20 FULL THREAD DEPTH

6 HOLES, SEE TABLE FOR THREAD SIZES

REVERSE PORT CONNECTIONS FOR OPPOSITE DIRECTION OF SHAFT ROTATION

FLOW DIRECTION

CLOCKWISE DIRECTION OF ROTATION

5 HOLES Ø14 FOIL-SPACED AS SHOWN ON A 233.00 P.C.D. SPOTTED TO GIVE AN EFFECTIVE Ø28.
**3-2 HMB030**

**Monobloc - ‘P’, ‘S’ and ‘Z’ Shafts**

<table>
<thead>
<tr>
<th>SPLINE DATA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>‘S’</strong></td>
<td></td>
</tr>
<tr>
<td>TO BS 3550 (ANSI B92.1 CLASS 5)</td>
<td></td>
</tr>
<tr>
<td>FLAT ROOT SIDE FIT, CLASS 1</td>
<td></td>
</tr>
<tr>
<td>PRESSURE ANGLE</td>
<td>30°</td>
</tr>
<tr>
<td>NUMBER OF TEETH</td>
<td>17</td>
</tr>
<tr>
<td>PITCH</td>
<td>8/16</td>
</tr>
<tr>
<td>MAJOR DIAMETER</td>
<td>56.41/56.28</td>
</tr>
<tr>
<td>FORM DIAMETER</td>
<td>50.703</td>
</tr>
<tr>
<td>MINOR DIAMETER</td>
<td>50.07/49.60</td>
</tr>
<tr>
<td>PIN DIAMETER</td>
<td>6.096</td>
</tr>
<tr>
<td>DIAMETER OVER PINS</td>
<td>62.985/62.931</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>‘Z’</strong></td>
<td></td>
</tr>
<tr>
<td>DIN 5480, W55 X 3 X 17 X 7h</td>
<td></td>
</tr>
</tbody>
</table>

KEY SUPPLIED—
14.046/14.028 WIDE
9.037/8.961 THICK

1/2"–20 UNF–2B x 32 FULL THREAD

1/2"–20 UNF–2B x 32 FULL THREAD
### 3-3 HMB030 (cont)

#### 2 Piece - ‘P’, ‘S’ and ‘Z’ Shafts

**SPLINE DATA**

**‘S’**
- TO BS 3550 (ANSI B92.1 CLASS 5)
- FLAT ROOT SIDE FIT, CLASS 1
- PRESSURE ANGLE: 30°
- NUMBER OF TEETH: 17
- PITCH: 8/16
- MAJOR DIAMETER: 56.41/56.28
- FORM DIAMETER: 50.703
- MINOR DIAMETER: 50.07/49.60
- PIN DIAMETER: 6.096
- DIAMETER OVER PINS: 62.985/62.931

**‘Z’**
- DIN 5480, W55 X 3 X 17 X 7h

---

**KEY SUPPLIED**
- 14.046/14.028 WIDE
- 9.037/8.961 THICK

**1/2”-20 UNF-2B x 32 FULL THREAD**

---

**MOUNTING FACE**

---

**‘P’**

---

**‘S’ & ‘Z’**

---
3-2 HMB030 (cont)

2 Piece - ‘F3’ & ‘FM3’ Valve Housings

VIEWS ON ARROW 'A'

F3/FM3 —
3" VALVE HOUSING WITH
1 1/4" SAE 4-BOLT FLANGES

PORT FLANGE BOLT TAPPING SIZE —
F3: 7/16"-14 UNC-2B X 27 FULL THREAD DEPTH
FM3: M12 X P1.75 X 27 FULL THREAD DEPTH

1 1/4" CODE 61
S.A.E. PORTS
(3000 SERIES)

8 HOLES, SEE TABLE
FOR THREAD SIZES
Monobloc - Rear Port Installation

EXAMPLE FOR MODEL CODE
REAR ENTRY MOTORCASE - HMB030/P/21

3/8" BSP x 17 FULL THREAD (CHOICE OF 3 POSITIONS) (2 NORMALLY PLUGGED)

NOTE - ENSURE ON INSTALLATION THAT DRAIN IS TAKEN FROM ABOVE MOTOR CENTRELINE.

DO NOT EXCEED 12 DEPTH OF COUPLING IN TO DRAIN PORT

5 HOLES ø18 FULL-SPACED AS SHOWN ON A 250° P.C.D. SPOTFACED TO GIVE AN EFFECTIVE ø30.
3-2 HMB030 (cont)

Monobloc - Side Port Installation

EXAMPLE FOR MODEL CODE.
SIDE ENTRY MOTORCASE – HMB030/P/FM/21

3/8" BSP DRAIN
NOTE: ENSURE ON INSTALLATION THAT DRAIN IS CONNECTED TO PORT ABOVE MOTOR

S H O L E S # 1 8 E Q U I - S P A C E D AS SHOWN ON A 1/2" D.I. F.C.D., SPOT FACED TO GIVE AN EFFECTIVE #15.

2 PORTS #25 TO SUIT SAE
CODE 61, 1" NOM. SPLIT FLANGE
PORT FLANGE BOLT TAPPING SIZE –
F: 3/8"-16 UNC-2B X 16 FULL THREAD DEPTH
FM: M10 X P1.5 X 16 FULL THREAD DEPTH

2X4 HOLES SEE TABLE FOR THREAD SIZES

REVERSE PORT CONNECTIONS FOR OPPOSITE DIRECTION OF SHAFT ROTATION FLOW DIRECTION

CLOCKWISE DIRECTION OF ROTATION

44
### SPLINE DATA

**S**
- TO BS 3550 (ANSI B92.1 CLASS 5)
- FLAT ROOT SIDE FIT, CLASS 1
- PRESSURE ANGLE: 30°
- NUMBER OF TEETH: 17
- PITCH: 8/16
- MAJOR DIAMETER: 56.41/56.29
- FORM DIAMETER: 50.703
- MINOR DIAMETER: 50.06/49.60
- PIN DIAMETER: 6.096
- DIAMETER OVER PINS: 62.984/62.931

**Z**
- DIN 5480 W55 x 3 x 17 x 7h

---

**'P'**
- KEY SUPPLIED—
  - 14.046/14.028 WIDE
  - 9.04/8.96 THICK

**'S' & 'Z'**
- 1/2"—20 UNF—2B X 32
- FULL THREAD DEPTH

---

**MOUNTING FACE**
- 88.1
- 5
- 5.71
- 5.59
- 100
- 141.8
- 140.4
3-3 HMB045 (cont)

2 Piece - 'P', 'S', 'Z' & Q Shafts

**SPLINE DATA**

'S'
- TO BS 3550 (ANSI B92.1 CLASS 5)
- FLAT ROOT SIDE FIT, CLASS 1
- PRESSURE ANGLE 30°
- NUMBER OF TEETH 17
- PITCH 8/16
- MAJOR DIAMETER 56.41/56.29
- FORM DIAMETER 50.06/49.60
- MINOR DIAMETER 50.06/49.60
- PIN DIAMETER 6.096
- DIAMETER OVER PINS 62.984/62.931

'Z'
- DIN 5480 W55 x 3 x 17 x 7h

'Q'
- TO BS 3550
- FLAT ROOT SIDE FIT
- PRESSURE ANGLE 30°
- NUMBER OF TEETH 21
- PITCH 12/24
- MAJOR DIAMETER 46.57/46.90
- FORM DIAMETER 46.14
- MINOR DIAMETER 42.33/42.46
- PIN DIAMETER 3.66 flattened to 3.56
- DIAMETER BETWEEN PINS 39.17/39.10
2 Piece - 'SM3' Valve Housing

SM3 –
3” VALVE HOUSING FOR BOLT ON MANIFOLD.

REVERSE PORT CONNECTIONS FOR OPPOSITE DIRECTION OF SHAFT ROTATION

HOLE DETAIL
TYP. 4 POS'N

FLOW DIRECTION

VIEWS ON ARROW 'A'

MOUNTING FACE

47
2 Piece - 'F3' & 'FM3' Valve Housings

F3/FM3 —
3" Valve Housing with
1 1/4" SAE 4-Bolt Flanges

Port Flange Bolt Tapping Size —
F3: 7/16"-14 UNC-2B X 27 Full Thread Depth
FM3: M12 X P1.75 X 27 Full Thread Depth
**2 Piece - Installation**

3/4"-16 UNF-2B drain (choice of 3 positions) (2 normally plugged)

 NOTE: Ensure on installation that drain is taken from above motor centreline.

 Do not exceed 12 depth of coupling in to drain port.

---

**Monobloc - Installation**

3/8" BSP drain (three deep, spotted) 475

 NOTE: Ensure on installation that drain is taken from above motor centreline.

Reverse port connections for opposite direction of shaft rotation.

Flow direction for all VLV HSG variants except F2/PM2/30/3.
3-4 HMB060/080

&P', 'S' & 'Z' Shafts

SPLINE DATA

'S'
TO BS 3550 (ANSI B92.1 CLASS 5)
FLAT ROOT SIDE FIT, CLASS 1
PRESSURE ANGLE 30°
NUMBER OF TEETH 14
PITCH 6/12
MAJOR DIAMETER 62.553/62.425
FORM DIAMETER 55.052
MINOR DIAMETER 54.084/53.525
PIN DIAMETER 8.128
DIAMETER OVER PINS 71.593/71.544

'Z'
DIN 5480 W70 x 3 x 30 x 22 x 7h

'P'
KEY SUPPLIED—
18.037/18.019 WIDE
11.99/11.94 THICK

1/2"—20 UNF—2B X 32
FULL THREAD DEPTH

'S' & 'Z'

1/2"—20 UNF—2B X 32
FULL THREAD DEPTH
3-4 HMB060/080 (cont)

‘T’ & ‘Q’ Shafts

KEY SUPPLIED--
19.10/19.05 SQ.

1 1/2"-12 UNF THREAD

BASIC TAPER, ON DIA
0.1001/0.0999 : 1

SLOTTED NUT 45.2 THICK
57.15 A/F

MOUNT FACE

83.5
81.9

165
61

92
6.4

10.92
10.77

3/4"-16 UNF-2B
x 25 FULL THREAD

80.0
79.5

7

21

SPLINE DATA
T O D S 3550
FLAT ROOT SIDE 1 T
PRESSURE ANGLE 30°
NUMBER OF TEETH 24
PITCH 12/24
MAJOR DIAMETER 53.25/52.92
MINOR DIAMETER 48.81/48.58
FORM DIAMETER 52.46
PIN DIAMETER 3.66 flatted to 3.56
DIMENSION BETWEEN PINS 40.63/40.50
HMB MOTORS

3-4 HMB060/080 (cont)

'SM3' Valve Housing

VIEWS ON ARROW 'A'

SM3 — 3" VALVE HOUSING FOR BOLT ON MANIFOLD.

REVERSE PORT CONNECTIONS FOR OPPOSITE DIRECTION OF SHAFT ROTATION

FLOW DIRECTION

HOLE DETAIL TYP. 4 POS'N

87

60

52

82

143.0

180

62.0

52.0

52.0

88

285
F3/FM3 —
3" VALVE HOUSING WITH
1 1/4" SAE 4-BOLT FLANGES

PORT FLANGE BOLT TAPPING SIZE —
F3: 7/16"-14 UNC-2B X 27 FULL THREAD DEPTH
FM3: M12 X P1.75 X 27 FULL THREAD DEPTH

8 HOLES, SEE TABLE FOR THREAD SIZES

1 1/4" CODE 61 S.A.E. PORTS
(3000 SERIES)
3/4”-18UNF-2B DRAIN (CHOICE OF 3 POSITIONS)
(2 NORMALLY PLUGGED)

NOTE: ENSURE ON INSTALLATION THAT DRAIN IS TAKEN FROM ABOVE MOTOR CENTRELINE.
DO NOT EXCEED 12 DEPTH OF COUPLING IN TO DRAIN PORT.

5 HOLES #20 EQUI-SPACED AS SHOWN ON A 5/27.03 P.C.D. SPOTFACED TO GIVE AN EFFECTIVE #40.
3-5 HMB100

‘P’, ‘S’ & ‘Z’ Shafts

SPLINE DATA

‘S’
TO BS 3550 (ANSI B92.1 CLASS 5)
FLAT ROOT SIDE FIT, CLASS 1
PRESSURE ANGLE 30°
NUMBER OF TEETH 14
PITCH 6/12
MAJOR DIAMETER 62.553/62.425
FORM DIAMETER 55.052
MINOR DIAMETER 54.084/53.525
PIN DIAMETER 8.128
DIAMETER OVER PINS 71.593/71.544

‘Z’
DIN 5480 W70 x 3 x 30 x 22 x 7h

‘P’
KEY SUPPLIED—
18.037/18.019 WIDE
11.99/11.94 THICK

1/2”-20 UNF-2B X 32
FULL THREAD DEPTH

‘S’ & ‘Z’

1/2”-20 UNF-2B X 32
FULL THREAD DEPTH
3-5 HMB100 (cont)

‘T’ & ‘Q’ Shafts

SPLINE DATA

TO BS 3550
FLAT ROOT SIDE RT
PRESSURE ANGLE 30°
NUMBER OF TEETH 24
PITCH 12/24
MAJOR DIAMETER 53.25/52.02
MINOR DIAMETER 48.61/48.68
FORM DIAMETER 52.49
PIN DIAMETER 3.66 flatted to 3.56
DIMENSION BETWEEN PINS 45.63/45.55
'SM3' Valve Housing

SM3 – 3" valve housing for bolt on manifold.

Reverse port connections for opposite direction of shaft rotation.

Hole detail typ. 4 pos’n

Views on arrow 'A'

Mounting face

Dimensions:
- 88
- 62.0
- 143.0
- 286
3-5 HMB100 (cont)


"F3' & 'FM3' Valve Housings

F3/FM3 —
3” VALVE HOUSING WITH
1 1/4” SAE 4-BOLT FLANGES

PORT FLANGE BOLT TAPPING SIZE —
F3: 7/16”-14 UNC-2B X 27 FULL THREAD DEPTH
FM3: M12 X P1.75 X 27 FULL THREAD DEPTH

"F4' & 'FM4' Valve Housings

F4/FM4 —
4” VALVE HOUSING WITH
1 1/2” SAE 4-BOLT FLANGES

PORT FLANGE BOLT TAPPING SIZE —
F4: 5/8”-11 UNC-2B X 35 FULL THREAD DEPTH
FM4: M16 X P2 X 35 FULL THREAD DEPTH
3/4"-18UNF-2B DRAIN (CHOICE OF 3 POSITIONS)
(2 NORMALLY PLUGGED)

NOTE: ENSURE ON INSTALLATION THAT DRAIN IS TAKEN FROM ABOVE MOTOR CENTRELINE.

DO NOT EXCEED 12 DEPTH OF COUPLING IN TO DRAIN PORT.

5 HOLES #20 COUL-SPACED AS SHOWN ON A #30.50 P.C.O. SPOTFACED TO GIVE AN EFFECTIVE #40.

REVERSE PORT CONNECTIONS FOR OPPOSITE DIRECTION OF SHAFT ROTATION
FLOW DIRECTION FOR ALL V.Y. HSG VARIANTS EXCEPT SM3

CLOCKWISE DIRECTION OF ROTATION
### 3-6 HM(HD)B125

**HMB125 - 'P1', 'S3', 'S4' & 'Z3' Shafts**

#### SPLINE DATA

<table>
<thead>
<tr>
<th>Spline</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>S3</strong></td>
<td>To BS 3550 (ANSI B92.1, Class 5)</td>
</tr>
<tr>
<td></td>
<td>Flat root side fit, Class 1</td>
</tr>
<tr>
<td>Pressure Angle</td>
<td>30°</td>
</tr>
<tr>
<td>Number of Teeth</td>
<td>20</td>
</tr>
<tr>
<td>Pitch</td>
<td>6/12</td>
</tr>
<tr>
<td>Major Diameter</td>
<td>87.953/87.825</td>
</tr>
<tr>
<td>Form Diameter</td>
<td>80.264</td>
</tr>
<tr>
<td>Minor Diameter</td>
<td>79.485/78.925</td>
</tr>
<tr>
<td>Pin Diameter</td>
<td>8.128</td>
</tr>
<tr>
<td>Diameter over Pins</td>
<td>97.084/97.030</td>
</tr>
</tbody>
</table>

| **S4** | Pressure Angle | 20° |
| Number of Teeth | 16 |
| Pitch | 5/10 |
| Major Diameter | 86.360/86.233 |
| Form Diameter | 76.124 |
| Minor Diameter | 74.93/72.39 |
| Pin Diameter | 8.636 |
| Diameter over Pins | 92.710/92.581 |

| **Z3** | DIN 5480 W85 x 3 x 27 x 7h |

**KEY SUPPLIED**
- 24.066/24.000 wide
- 16.05/16.00 thick

**3/4”-16 UNF-2B x 32 FULL THREAD DEPTH**

**MOUNTING FACE**

- 'P1'
- 'S3', 'S4' & 'Z3'
HMB125 - 'T' & 'Q' Shafts

SPLINE DATA
BS3550: FLAT ROOT SIDE FIT
NUMBER OF TEETH 34
PITCH 12/24
MAJOR DIAMETER 74.41/74.08
MINOR DIAMETER 69.98/69.85
PIN DIAMETER 3.56 flotted to 3.56
DIMENSION BETWEEN PINS 66.81/66.74

1 1/2"-12 UNF THREAD
SLOTTED NUT 45.2 THICK
57.15 A/F

KEY SUPPLIED—
22.27/22.22 WIDE
15.92/15.87 THICK

3/4"-16 UNF-2B
x 25 FULL THREAD

77.7 76.1
3-6 HM(HD)B125 (cont)

HMHDB125 - 'P2' Shafts

KEY SUPPLIED—
24.065/24.000 WDE
16.05/16.00 THICK

3/4"-16 UNF-2B X 32
FULL THREAD DEPTH

'P2'

196.4
194.8
HMB MOTORS

3-6 HM(HD)B125 (cont)

HMHDB125 - 'S5' & 'Z5' Shafts

SPLINE DATA

'S5'

<table>
<thead>
<tr>
<th>PRESSURE ANGLE</th>
<th>20°</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMBER OF TEETH</td>
<td>23</td>
</tr>
<tr>
<td>PITCH</td>
<td>6/12</td>
</tr>
<tr>
<td>MAJOR DIAMETER</td>
<td>100.652/100.526</td>
</tr>
<tr>
<td>FORM DIAMETER</td>
<td>92.939</td>
</tr>
<tr>
<td>MINOR DIAMETER</td>
<td>92.184/91.626</td>
</tr>
<tr>
<td>PIN DIAMETER</td>
<td>8.128</td>
</tr>
<tr>
<td>DIAMETER OVER PINS</td>
<td>109.573/109.517</td>
</tr>
</tbody>
</table>

'Z5'

DIN 5480 W100 x 4 x 24 x 7h

3/4"-16 UNF-2B X 32 FULL THREAD DEPTH

76 MIN STRAIGHT

158.0
156.4
3-6 HM(HD)B125 (cont)

'SM3' Valve Housing

SM3 —
3" VALVE HOUSING FOR BOLT ON MANIFOLD.

REVERSE PORT CONNECTIONS
FOR OPPOSITE DIRECTION OF SHAFT ROTATION

VIEWS ON ARROW 'A'

HOLE DETAIL

FLOW DIRECTION

87

62.0

88

160

315

81

81

81

81

81
3-6 HM(HD)B125 (cont)

'F3' & 'FM3' Valve Housings

F3/ FM3 –
3” VALVE HOUSING WITH
1 1/4” SAE 4-BOLT FLANGES

PORT FLANGE BOLT TAPPING SIZE –
F3: 7/16”-14 UNC-2B X 27 FULL THREAD DEPTH
FM3: M12 X P1.75 X 27 FULL THREAD DEPTH

1 1/4” CODE 61
S.A.E. PORTS
(3000 SERIES)

8 HOLES, SEE TABLE
FOR THREAD SIZES
3-6 HM(HD)B125 (cont)

"F4" & "FM4" Valve Housings

F4/FM4 –
4" VALVE HOUSING WITH 1 1/2" SAE 4-BOLT FLANGES

PORT FLANGE BOLT TAPPING SIZE –
F4: 5/8"–11 UNC–2B X 35 FULL THREAD DEPTH
FM4: M16 X P2 X 35 FULL THREAD DEPTH

8 HOLES, SEE TABLE FOR THREAD SIZES

1 1/2" SAE (CODE 62) PORTS (6000 SERIES)
Installation

\[\frac{3}{4}^\circ-15\] UNF-2B DRAIN (CHOICE OF 3 POSITIONS)
(2 NORMALLY PLUGGED)
NOTE - ENSURE ON INSTALLATION THAT DRAIN IS TAKEN FROM ABOVE MOTOR CENTRELINE.
DO NOT EXCEED 12 DEPTH OF COUPLING IN TO DRAIN PORT.

5 HOLE #21 EQU-SPACED AS SHOWN ON A [139] P.C.D. SPOTTED FACE TO GIVE AN EFFECTIVE #40
+ 20.15

REVERSE PORT CONNECTIONS FOR OPPOSITE DIRECTION OF SHAFT ROTATION
FLOW DIRECTION FOR ALL VLV HSG VARIANTS EXCEPT SM3

MOUNTING FACE

CLOCKWISE DIRECTION OF ROTATION

MOUNTING FACE (HM(HD)B125 ONLY)

CLOCKWISE DIRECTION OF ROTATION

\[\varnothing 30.50\]
\[\varnothing 80.67\]

40.6

57 MAX
**3-7 HM(HD)B150/200**

_HMB150/200 - 'P1', 'S3', 'S4' & 'Z3' Shafts_

**SPLINE DATA**

<table>
<thead>
<tr>
<th>Spline</th>
<th>Pressure Angle</th>
<th>Number of Teeth</th>
<th>Pitch</th>
<th>Major Diameter</th>
<th>Form Diameter</th>
<th>Minor Diameter</th>
<th>Pin Diameter</th>
<th>Diameter over Pins</th>
</tr>
</thead>
<tbody>
<tr>
<td>'S3'</td>
<td>30°</td>
<td>20</td>
<td>6/12</td>
<td>87.953/87.825</td>
<td>80.264</td>
<td>79.485/78.925</td>
<td>8.128</td>
<td>97.084/97.030</td>
</tr>
<tr>
<td>'S4'</td>
<td>20°</td>
<td>16</td>
<td>5/10</td>
<td>86.360/86.233</td>
<td>76.124</td>
<td>74.93/72.39</td>
<td>6.636</td>
<td>92.710/92.581</td>
</tr>
<tr>
<td>'Z3'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DIN 5480 W85 x 3 x 27 x 7h

KEY SUPPLIED:
- 24.000/24.000 wide
- 16.05’/16.00’ thick

FULL THREAD DEPTH

3/4’-16 UNF-2B x 32

76 MIN STRAIGHT
HMB MOTORS

3-7 HM(HD)B150/200 (cont)

HMB150/200 - 'T' Shaft

- Key supplied: 22.27/22.22 WIDE 15.92/15.87 THICK
- 1 1/2"-12 UNF THREAD
- Basic taper on diameter: 0.1001/0.0999 PER mm
- Slotted nut: 45.2 THICK 57.15 A/F

Dimensions:
- Mounting face: 172 x 61
- Taper: 64.6 x 63.2
- Diameter: 85.344 (datum)

Diagram showing dimensions and features.
**SPLINE DATA**

<table>
<thead>
<tr>
<th>Shaft</th>
<th>Pressure Angle</th>
<th>Number of Teeth</th>
<th>Pitch</th>
<th>Major Diameter</th>
<th>Minor Diameter</th>
<th>Pin Diameter</th>
<th>Diameter Over Pins</th>
</tr>
</thead>
<tbody>
<tr>
<td>'S5'</td>
<td>30°</td>
<td>23</td>
<td>6/12</td>
<td>100.652/100.526</td>
<td>92.184/91.626</td>
<td>8.128</td>
<td>109.573/109.517</td>
</tr>
<tr>
<td>'Z5'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Notes:**
- Key supplied: 24.065/24.000 WOE 16.02/16.00 thick
- 3/4"-16 UNF-2B x 32 full thread depth
- 3/4"-16 UNF-2B x 32 full thread depth
- 76 min straight
HMHB150/200 - 'Q' Shafts

**SPLINE DATA**

- BS3550: FLAT ROOT SIDE FIT
- NUMBER OF TEETH: 34
- PITCH: 12/24
- MAJOR DIAMETER: 74.41/74.08
- MINOR DIAMETER: 69.98/69.85
- PIN DIAMETER: 3.66 fitted to 3.56
- DIMENSION BETWEEN PINS: 66.81/66.74

- 3/4"-16 UNF-2B x 25 FULL THREAD

---

'SM3' Valve Housing

**MOUNTING FACE**

- SM3 - 3" VALVE HOUSING FOR BOLT ON MANIFOLD.
- REVERSE PORT CONNECTIONS FOR OPPOSITE DIRECTION OF SHAFT ROTATION
3-7 HM(HD)B150/200 (cont)

‘F3’ & ‘FM3’ Valve Housings

**F3/FM3**

3” VALVE HOUSING WITH
1 1/4” SAE 4-BOLT FLANGES

**PORT FLANGE BOLT TAPPING SIZE**

F3: 7/16”-14 UNC-2B X 27 FULL THREAD DEPTH
FM3: M12 X P1.75 X 27 FULL THREAD DEPTH

---

![Diagram of F3/FM3 Valve Housings]

- PORT 1
- PORT 2
- 1 1/4” CODE 61 S.A.E. PORTS (3000 SERIES)
- 87
- 30.2
- 295
- 388

---

8 Holes, See Table for Thread Sizes
3-7 HM(HD)B150/200 (cont)

‘F4’ & ‘FM4’ Valve Housings

F4/FM4 —
4” VALVE HOUSING WITH
1 1/2” SAE 4—BOLT FLANGES

PORT FLANGE BOLT TAPPING SIZE —
F4: 5/8”—11 UNC—2B X 35 FULL THREAD DEPTH
FM4: M16 X P2 X 35 FULL THREAD DEPTH

8 HOLES, SEE TABLE FOR THREAD SIZES

PORT 1

PORT 2
3-7 HM(HD)B150/200 (cont)

Installation

3/4"-11UNF-2B DRAIN (CHOICE OF 3 POSITIONS)
(2 NATIVALLY PLUGGED)
NOTE: ENSURE ON INSTALLATION THAT DRAIN IS
TAKEN FROM ARMS MOTOR CENTRIC.
DO NOT EXCEED 12 DEPTH OF COUPLING
IN TO DRAIN FDR

5 HOLES #20 E2AL-SAPCRED AS
SHOWN ON A SLN# 20 SPACED
TO GIVE AN EFFECTIVE #40

REVERSE PORT CONNECTIONS
FOR OPPOSITE DIRECTION OF
SHAFT ROTATION
FLOW DIRECTION FOR
ALL VL ML MOD VVANTS
EXCEPT 1663

CLOCKWISE DIRECTION
OF ROTATION

MOUNTING FACE

(HMHB150/200 ONLY)

CLOCKWISE DIRECTION
OF ROTATION

MOUNTING FACE

74
3-8 HM(HD)B270

HMB270 - 'P1', 'S3' & 'Z' Shafts

SPLINE DATA

'S3'
- TO BS 3550 (ANSI B92.1, CLASS 5)
- FLAT ROOT SIDE FIT, CLASS 1
- PRESSURE ANGLE: 30°
- NUMBER OF TEETH: 20
- PITCH: 6/12
- MAJOR DIAMETER: 87.953/87.825
- FORM DIAMETER: 80.264
- MINOR DIAMETER: 79.485/78.925
- PIN DIAMETER: 8.128
- DIAMETER OVER PINS: 97.084/97.030

'Z'
- DIN 5480 W100 x 4 x 24 x 7h

KEY SUPPLIED:
- 3/4"-16 UNF-2B X 32 FULL THREAD DEPTH
- MOUNTING FACE

'P1'
- KEY SUPPLIED:
  - 24.066/24.000 WIDE
  - 16.05/16.00 THICK

'S3' & 'Z'
- 3/4"-16 UNF-2B X 32 FULL THREAD DEPTH
- 76 MIN STRAIGHT
HMB MOTORS

3-8 HM(HD)B270 (cont)

HMB270 - 'T' & 'Q' Shaft

SPLINE DATA
BS3550 : FLAT ROOT SIDE FIT

NUMBER OF TEETH 34
PITCH 12/24
MAJOR DIAMETER 74.41/74.08
MINOR DIAMETER 69.98/69.85
PIN DIAMETER 3.66 flatted to 3.56
DIMENSION BETWEEN PINS 66.81/66.74

KEY SUPPLIED-
25.45/25.40 WIDE
17.539/17.463 THICK

1 1/2"-12 UNF THREAD
BASIC TAPER, ON DIAMETER
0.001/0.0999 PER mm
SLOTTED NUT 45.2 THICK
57.15 A/F

3/4"-16 UNF-2B X 25
FULL THREAD DEPTH
3-8 HM(HD)B270 (cont)

**HMHDB270 - 'P2' & 'S5' Shafts**

### SPLINE DATA

**'S3'**
- TO BS 3550 (ANSI B92.1, CLASS 5)
- FLAT ROOT SIDE FIT, CLASS 1
- PRESSURE ANGLE: 30°
- NUMBER OF TEETH: 23
- PITCH: 6/12
- MAJOR DIAMETER: 100.653/100.526
- FORM DIAMETER: 92.939
- MINOR DIAMETER: 92.184/91.625
- PIN DIAMETER: 8.128
- DIAMETER OVER PINS: 109.573/109.517

**'P2'**
- KEY SUPPLIED:
  - 24.066/24.000 WIDE
  - 16.05/16.00 THICK
- 3/4"-16 UNF-2B X 32 FULL THREAD DEPTH

**'S5'**
- 3/4"-16 UNF-2B X 32 FULL THREAD DEPTH
- 101.6 MIN STRAIGHT
3-8 HM(HD)B270 (cont)

HMHDB270 - 'Z' Shaft

'DIN 5480 W100 x 4 x 24 x 7h'

'Z'

76 MIN STRAIGHT

3/4"-16 UNF-2B X 32 FULL THREAD DEPTH

155.3
153.9
F4/ FM4 —
4" VALVE HOUSING WITH
1 1/2" SAE 4—BOLT FLANGES

PORT FLANGE BOLT TAPPING SIZE —
F4: 5/8”-11 UNC—2B X 35 FULL THREAD DEPTH
FM4: M16 X P2 X 35 FULL THREAD DEPTH

Ø1 1/2" SAE (CODE 62) PORTS (6000 SERIES).

8 HOLES, SEE TABLE FOR THREAD SIZES
Installation

3/4"-18 UNC-2B DRAIN (CHOICE OF 3 POSITIONS)
(2) NORMALLY PLUNGED

NOTE: ENSURE ON INSTALLATION THAT DRAIN IS TAKEN FROM ABOVE MOTOR CENTRELINE.
DO NOT EXCEED 32 DEPTH OF COUPLING IN TO DRAIN PORT.

MOUNTING FACE

REVERSE PORT CONNECTIONS FOR OPPOSITE DIRECTION OF SHAFT ROTATION.
FLOW DIRECTION.

MOUNTING FACE (HM(2)B270 ONLY)

CLOCKWISE DIRECTION
OF ROTATION

4711 0/53A
HMB325 - 'P1', 'S3' & 'Z' Shafts

**SPLINE DATA**

'S3'
- TO BS 3550 (ANSI B92.1, CLASS 5)
- FLAT ROOT SIDE FIT, CLASS 1
- PRESSURE ANGLE: 30°
- NUMBER OF TEETH: 20
- PITCH: 6/12
- MAJOR DIAMETER: 87.953/87.825
- FORM DIAMETER: 80.264
- MINOR DIAMETER: 79.485/78.925
- PIN DIAMETER: 8.128
- DIAMETER OVER PINS: 97.084/97.030

'Z'
- DIN 5480 W100 x 4 x 24 x 7h
3-9 HM(HD)B325 (cont)

HMB325 - 'T' & 'Q' Shaft

**SPLINE DATA**

BS3550 : FLAT ROOT SIDE FIT

- NUMBER OF TEETH: 34
- PITCH: 12/24
- MAJOR DIAMETER: 74.41/74.08
- MINOR DIAMETER: 69.98/69.55
- PIN DIAMETER: 3.66 flattened to 3.56
- DIMENSION BETWEEN PINS: 66.81/66.74

**KEY SUPPLIED—**
- 25.45/25.40 WIDE
- 17.539/17.453 THICK

**BASIC TAPER, ON DIAMETER**
- 0.1001/0.0999 PER mm

**SLOTTED NUT 45.2 THICK**
- 57.15 A/F

**1 1/2"-12 UNF THREAD**

**MOUNTING FACE**

**3/4"-16 UNF-2B X 25**

**FULL THREAD DEPTH**

**DIMENSIONS**

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.6</td>
<td></td>
</tr>
<tr>
<td>57.0</td>
<td></td>
</tr>
<tr>
<td>183</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td></td>
</tr>
<tr>
<td>133.4</td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td></td>
</tr>
<tr>
<td>10.54</td>
<td></td>
</tr>
<tr>
<td>10.49</td>
<td></td>
</tr>
<tr>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>114.3</td>
<td></td>
</tr>
<tr>
<td>116.5</td>
<td></td>
</tr>
<tr>
<td>9.7</td>
<td></td>
</tr>
<tr>
<td>36.8</td>
<td></td>
</tr>
<tr>
<td>55.0</td>
<td></td>
</tr>
<tr>
<td>53.6</td>
<td></td>
</tr>
</tbody>
</table>
HMHDB325 - 'P2' & 'S5' Shafts

SPLINE DATA

'S3'
- TO BS 3550 (ANSI B92.1, CLASS 5)
- FLAT ROOT SIDE FIT, CLASS 1
- PRESSURE ANGLE 30°
- NUMBER OF TEETH 23
- PITCH 6/12
- MAJOR DIAMETER 100.653/100.526
- FORM DIAMETER 92.939
- MINOR DIAMETER 92.184/91.625
- PIN DIAMETER 8.128
- DIAMETER OVER PINS 109.573/109.517

'P2'
- KEY SUPPLIED-
  - 24.066/24.000 WIDE
  - 16.05/16.00 THICK
- 3/4"-16 UNF-2B X 32
- FULL THREAD DEPTH

'S5'
- 101.6 MIN STRAIGHT
- 3/4"-16 UNF-2B X 32
- FULL THREAD DEPTH

MOUNTING FACE
3-9 HM(HD)B325 (cont)

HMHDB325 - 'Z' Shaft

'DIN 5480 W100 x 4 x 24 x 7h

'Z'

76 MIN STRAIGHT

3/4"-16 UNF-2B X 32
FULL THREAD DEPTH

155.3
153.9
3-9 HM(HD)B325 (cont)

'F4' & 'FM4' Valve Housings

F4/FM4 —
4" VALVE HOUSING WITH
1 1/2" SAE 4-BOLT FLANGES

PORT FLANGE BOLT TAPPING SIZE —
F4: 5/8"—11 UNC—2B X 35 FULL THREAD DEPTH
FM4: M16 X P2 X 35 FULL THREAD DEPTH

#1 1/2" SAE (CODE 62)
PORTS (6000 SERIES)

8 HOLES, SEE TABLE
FOR THREAD SIZES

PORT 1
324

PORT 2
460

79.4
36.5
36.5
79.4
379
Installation

3/4"-18 NPTF-2S Drain (Choice of 3 positions)
(Note: Ensure on installation that drain is taken from above motor centreline.
Do not exceed 12 depth of coupling in to drain port.)
SPLINE DATA

'S'
- TO BS 3550 (ANSI B92.1, CLASS 5)
- FLAT ROOT SIDE FIT, CLASS 1
- PRESSURE ANGLE 30°
- NUMBER OF TEETH 23
- PITCH 6/12
- MAJOR DIAMETER 100.653/100.526
- FORM DIAMETER 92.939
- MINOR DIAMETER 92.184/91.625
- PIN DIAMETER 8.128
- DIAMETER OVER PINS 109.573/109.517

'Z'
- DIN 5480 W100 x 4 x 24 x 7h

2 KEYS SUPPLIED—
- 24.066/24.000 WIDE
- 16.05/16.00 THICK

3/4"-16 UNF-2B X 32 FULL THREAD DEPTH

101.6 MIN STRAIGHT

3/4"-16 UNF-2B X 32 FULL THREAD DEPTH
Installation

5 HOLES #20 EQUALLY SPACED AS SHOWN ON A 5/8" FACED IN A 1/4" BSPT

2 DRAIN PORTS
3/4"-16 UNF-2B
SPOTFACE TO #36
1 NORMALLY PLUGGED

2 HOLES #20
44"-56.5" BSPT

6 HOLES 1/2"-20 UNF-2B
X 1 1/2" FULL THREAD DEPTH
21.6"
43.2"
30.9"

4 HOLES 1/2"-20 UNF-2B
X 1 1/2" FULL THREAD
1/4" BSPT, INTERNALLY CONNECTED TO PORT B AND SUPPLIED PLUGGED 36S
3-11 HMB500

&P', 'S' & 'Z' Shafts

SPLINE DATA

'S'
TO BS 3550 (ANSI B92.1, CLASS 5)
FLAT ROOT SIDE FIT, CLASS 1
PRESSURE ANGLE 30°
NUMBER OF TEETH 23
PITCH 6/12
MAJOR DIAMETER 100.653/100.526
FORM DIAMETER 92.939
MINOR DIAMETER 92.184/91.625
PIN DIAMETER 8.128
DIAMETER OVER PINS 109.573/109.517

'Z'
DIN 5480 W100 x 4 x 24 x 7h
Installation

5 Holes #20 equally spaced as shown on a 31/8 PCD, spot faced to #38

2 Drain ports 3/4”-16 UNF-2B spot faced to #38 (1 normally plugged)

3-11 HMB500 (cont)

HMB MOTORS

Installation

5 Holes #20 equally spaced as shown on a 31/8 PCD, spot faced to #38

2 Drain ports 3/4”-16 UNF-2B spot faced to #38 (1 normally plugged)

REVERSE PORT CONNECTIONS FOR OPPOSITE DIRECTION OF SHAFT ROTATION

FLOW DIRECTION

CLOCKWISE DIRECTION OF ROTATION

MOUNTING FACE

4 HOLES 1/2”-20 UNF-2B x 20 FULL THREAD

1/4” BSPT, internally connected to port 8 and supplied plugged 305

SPOUT #305.5/305.6/305.7

138.5

127.7

126

126

127.7

157

43.2

21.5

38.8

38.8

8 HOLES 1/2”-20 UNF-2B x 20 FULL THREAD

PORTS A & C will accept S.A.E. code 61 3” split flanges

1 1/4” BSPT

468

648

90
### Conversion Table

<table>
<thead>
<tr>
<th></th>
<th>Pressure</th>
<th>Flow</th>
<th>Length</th>
<th>Torque</th>
<th>Power</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Pressure</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bar</td>
<td>PSI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>14.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Flow</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l/min</td>
<td>gal/min</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.264 US</td>
<td>0.219 UK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Length</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm</td>
<td>inch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Torque</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nm</td>
<td>lbf ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.737</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Power</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kW</td>
<td>hp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.341</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Mass</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kg</td>
<td>lb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
KAWASAKI PRECISION MACHINERY (UK) LTD
Ernesettle, Plymouth
Devon, PL5 2SA, England
Tel: +44 1752 364394
Fax: +44 1752 364816
Mail: info@kpm-uk.co.uk
Website: www.kpm-eu.com

OTHER GLOBAL SALES OFFICES

JAPAN
Kawasaki Heavy Industry Ltd, Precision Machinery Ltd. Tokyo Office World Trade Center Bldg.
4-1 Hamamatsu-cho
2-chome, Minato-ku
Tokyo 105-6116
Japan
Tel: +81-3-3435-6862
Website: www.khi.co.jp/kpm

U.S.A
Kawasaki Precision Machinery (U.S.A.), Inc.
3838 Broadmoor Avenue S.E.
Grand Rapids
Michigan 49512
U.S.A.
Tel: +1-616-975-3101
Website: www.kpm-usa.com

CHINA
Kawasaki Precision Machinery Trading (Shanghai) Co., Ltd. 17th Floor (Room 1701), The Headquarters Building No168 XiZang Road (M)
Huangpu District
Shanghai 200001
China
Tel: +86-021-3366-3800

KOREA
Flutex, Ltd.
192-11, Shinchon-dong
Changwon
Kyungnam 641-370
Korea
Tel: +82-55-286-5551
Website: www.flutex.co.kr

The specified data is for product description purposes only and may not be deemed to be guaranteed unless expressly confirmed in the contract.

Data sheet: M-10.18